Showing posts with label network-based media processing. Show all posts
Showing posts with label network-based media processing. Show all posts

Saturday, February 22, 2020

MPEG news: a report from the 129th meeting, Brussels, Belgium

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects. Additionally, this version of the blog post will be also posted at ACM SIGMM Records.

The 129th MPEG meeting concluded on January 17, 2020 in Brussels, Belgium with the following topics:
  • Coded representation of immersive media – WG11 promotes Network-Based Media Processing (NBMP) to the final stage
  • Coded representation of immersive media – Publication of the Technical Report on Architectures for Immersive Media
  • Genomic information representation – WG11 receives answers to the joint call for proposals on genomic annotations in conjunction with ISO TC 276/WG 5
  • Open font format – WG11 promotes Amendment of Open Font Format to the final stage
  • High efficiency coding and media delivery in heterogeneous environments – WG11 progresses Baseline Profile for MPEG-H 3D Audio
  • Multimedia content description interface – Conformance and Reference Software for Compact Descriptors for Video Analysis promoted to the final stage
Additional Important Activities at the 129th WG 11 (MPEG) meeting
The 129th WG 11 (MPEG) meeting was attended by more than 500 experts from 25 countries working on important activities including (i) a scene description for MPEG media, (ii) the integration of Video-based Point Cloud Compression (V-PCC) and Immersive Video (MIV), (iii) Video Coding for Machines (VCM), and (iv) a draft call for proposals for MPEG-I Audio among others.

The corresponding press release of the 129th MPEG meeting can be found here: https://mpeg.chiariglione.org/meetings/129. This report focused on network-based media processing (NBMP), architectures of immersive media, compact descriptors for video analysis (CDVA), and an update about adaptive streaming formats (i.e., DASH and CMAF).

MPEG picture at friday plenary; © Rob Koenen (Tiledmedia).


Coded representation of immersive media – WG11 promotes Network-Based Media Processing (NBMP) to the final stage

At its 129th meeting, MPEG promoted ISO/IEC 23090-8, Network-Based Media Processing (NBMP), to Final Draft International Standard (FDIS). The FDIS stage is the final vote before a document is officially adopted as an International Standard (IS). During the FDIS vote, publications and national bodies are only allowed to place a Yes/No vote and are no longer able to make any technical changes. However, project editors are able to fix typos and make other necessary editorial improvements.

What is NBMP? The NBMP standard defines a framework that allows content and service providers to describe, deploy, and control media processing for their content in the cloud by using libraries of pre-built 3rd party functions. The framework includes an abstraction layer to be deployed on top of existing commercial cloud platforms and is designed to be able to be integrated with 5G core and edge computing. The NBMP workflow manager is another essential part of the framework enabling the composition of multiple media processing tasks to process incoming media and metadata from a media source and to produce processed media streams and metadata that are ready for distribution to media sinks.

Why NBMP? With the increasing complexity and sophistication of media services and the incurred media processing, offloading complex media processing operations to the cloud/network is becoming critically important in order to keep receiver hardware simple and power consumption low.

Research aspects: NBMP reminds me a bit about what has been done in the past in MPEG-21, specifically Digital Item Adaptation (DIA) and Digital Item Processing (DIP). The main difference is that MPEG now targets APIs rather than pure metadata formats, which is a step forward in the right direction as APIs can be implemented and used right away. NBMP will be particularly interesting in the context of new networking approaches including, but not limited to, software-defined networking (SDN), information-centric networking (ICN), mobile edge computing (MEC), fog computing, and related aspects in the context of 5G.

Coded representation of immersive media – Publication of the Technical Report on Architectures for Immersive Media

At its 129th meeting, WG11 (MPEG) published an updated version of its technical report on architectures for immersive media. This technical report, which is the first part of the ISO/IEC 23090 (MPEG-I) suite of standards, introduces the different phases of MPEG-I standardization and gives an overview of the parts of the MPEG-I suite. It also documents use cases and defines architectural views on the compression and coded representation of elements of immersive experiences. Furthermore, it describes the coded representation of immersive media and the delivery of a full, individualized immersive media experience. MPEG-I enables scalable and efficient individual delivery as well as mass distribution while adjusting to the rendering capabilities of consumption devices. Finally, this technical report breaks down the elements that contribute to a fully immersive media experience and assigns quality requirements as well as quality and design objectives for those elements.

Research aspects: This technical report provides a kind of reference architecture for immersive media, which may help identify research areas and research questions to be addressed in this context.

Multimedia content description interface – Conformance and Reference Software for Compact Descriptors for Video Analysis promoted to the final stage

Managing and organizing the quickly increasing volume of video content is a challenge for many industry sectors, such as media and entertainment or surveillance. One example task is scalable instance search, i.e., finding content containing a specific object instance or location in a very large video database. This requires video descriptors that can be efficiently extracted, stored, and matched. Standardization enables extracting interoperable descriptors on different devices and using software from different providers so that only the compact descriptors instead of the much larger source videos can be exchanged for matching or querying. ISO/IEC 15938-15:2019 – the MPEG Compact Descriptors for Video Analysis (CDVA) standard – defines such descriptors. CDVA includes highly efficient descriptor components using features resulting from a Deep Neural Network (DNN) and uses predictive coding over video segments. The standard is being adopted by the industry. At its 129th meeting, WG11 (MPEG) has finalized the conformance guidelines and reference software. The software provides the functionality to extract, match, and index CDVA descriptors. For easy deployment, the reference software is also provided as Docker containers.

Research aspects: The availability of reference software helps to conduct reproducible research (i.e., reference software is typically publicly available for free) and the Docker container even further contributes to this aspect.

DASH and CMAF

The 4th edition of DASH has already been published and is available as ISO/IEC 23009-1:2019. Similar to previous iterations, MPEG’s goal was to make the newest edition of DASH publicly available for free, with the goal of industry-wide adoption and adaptation. During the most recent MPEG meeting, we worked towards implementing the first amendment which will include additional (i) CMAF support and (ii) event processing models with minor updates; these amendments are currently in draft and will be finalized at the 130th MPEG meeting in Alpbach, Austria. An overview of all DASH standards and updates are depicted in the figure below:

ISO/IEC 23009-8 or “session-based DASH operations” is the newest variation of MPEG-DASH. The goal of this part of DASH is to allow customization during certain times of a DASH session while maintaining the underlying media presentation description (MPD) for all other sessions. Thus, MPDs should be cacheable within content distribution networks (CDNs) while additional information should be customizable on a per session basis within a newly added session-based description (SBD). It is understood that the SBD should have an efficient representation to avoid file size issues and it should not duplicate information typically found in the MPD.

The 2nd edition of the CMAF standard (ISO/IEC 23000-19) will be available soon (currently under FDIS ballot) and MPEG is currently reviewing additional tools in the so-called ‘technologies under considerations’ document. Therefore, amendments were drafted for additional HEVC media profiles and exploration activities on the storage and archiving of CMAF contents.

The next meeting will bring MPEG back to Austria (for the 4th time) and will be hosted in Alpbach, Tyrol. For more information about the upcoming 130th MPEG meeting click here.

Click here for more information about MPEG meetings and their developments

Thursday, May 10, 2018

MPEG news: a report from the 122nd meeting, San Diego, CA, USA

The original blog post can be found at the Bitmovin Techblog and has been updated here to focus on and highlight research aspects. Additionally, this version of the blog post will be also posted at ACM SIGMM Records.


The MPEG press release comprises the following topics:
  • Versatile Video Coding (VVC) project starts strongly in the Joint Video Experts Team
  • MPEG issues Call for Proposals on Network-based Media Processing
  • MPEG finalizes 7th edition of MPEG-2 Systems Standard
  • MPEG enhances ISO Base Media File Format (ISOBMFF) with two new features
  • MPEG-G standards reach Draft International Standard for transport and compression technologies

Versatile Video Coding (VVC) – MPEG’ & VCEG’s new video coding project starts strong

The Joint Video Experts Team (JVET), a collaborative team formed by MPEG and ITU-T Study Group 16’s VCEG, commenced work on a new video coding standard referred to as Versatile Video Coding (VVC). The goal of VVC is to provide significant improvements in compression performance over the existing HEVC standard (i.e., typically twice as much as before) and to be completed in 2020. The main target applications and services include — but not limited to — 360-degree and high-dynamic-range (HDR) videos. In total, JVET evaluated responses from 32 organizations using formal subjective tests conducted by independent test labs. Interestingly, some proposals demonstrated compression efficiency gains of typically 40% or more when compared to using HEVC. Particular effectiveness was shown on ultra-high definition (UHD) video test material. Thus, we may expect compression efficiency gains well-beyond the targeted 50% for the final standard.

Research aspects: Compression tools and everything around it including its objective and subjective assessment. The main application area is clearly 360-degree and HDR. Watch out conferences like PCS and ICIP (later this year), which will be full of papers making references to VVC. Interestingly, VVC comes with a first draft, a test model for simulation experiments, and a technology benchmark set which is useful and important for any developments for both inside and outside MPEG as it allows for reproducibility.

MPEG issues Call for Proposals on Network-based Media Processing

This Call for Proposals (CfP) addresses advanced media processing technologies such as network stitching for VR service, super resolution for enhanced visual quality, transcoding, and viewport extraction for 360-degree video within the network environment that allows service providers and end users to describe media processing operations that are to be performed by the network. Therefore, the aim of network-based media processing (NBMP) is to allow end user devices to offload certain kinds of processing to the network. Therefore, NBMP describes the composition of network-based media processing services based on a set of media processing functions and makes them accessible through Application Programming Interfaces (APIs). Responses to the NBMP CfP will be evaluated on the weekend prior to the 123rd MPEG meeting in July 2018.

Research aspects: This project reminds me a lot about what has been done in the past in MPEG-21, specifically Digital Item Adaptation (DIA) and Digital Item Processing (DIP). The main difference is that MPEG targets APIs rather than pure metadata formats, which is a step forward into the right direction as APIs can be implemented and used right away. NBMP will be particularly interesting in the context of new networking approaches including, but not limited to, software-defined networking (SDN), information-centric networking (ICN), mobile edge computing (MEC), fog computing, and related aspects in the context of 5G.

7th edition of MPEG-2 Systems Standard and ISO Base Media File Format (ISOBMFF) with two new features

More than 20 years since its inception development of MPEG-2 systems technology (i.e., transport/program stream) continues. New features include support for: (i) JPEG 2000 video with 4K resolution and ultra-low latency, (ii) media orchestration related metadata, (iii) sample variance, and (iv) HEVC tiles.

The partial file format enables the description of an ISOBMFF file partially received over lossy communication channels. This format provides tools to describe reception data, the received data and document transmission information such as received or lost byte ranges and whether the corrupted/lost bytes are present in the file and repair information such as location of the source file, possible byte offsets in that source, byte stream position at which a parser can try processing a corrupted file. Depending on the communication channel, this information may be setup by the receiver or through out-of-band means.

ISOBMFF's sample variants (2nd edition), which are typically used to provide forensic information in the rendered sample data that can, for example, identify the specific Digital Rights Management (DRM) client which has decrypted the content. This variant framework is intended to be fully compatible with MPEG’s Common Encryption (CENC) and agnostic to the particular forensic marking system used.

Research aspects: MPEG systems standards are mainly relevant for multimedia systems research with all its characteristics. The partial file format is specifically interesting as it targets scenarios with lossy communication channels.

MPEG-G standards reach Draft International Standard for transport and compression technologies

MPEG-G provides a set of standards enabling interoperability for applications and services dealing with high-throughput deoxyribonucleic acid (DNA) sequencing. At its 122nd meeting, MPEG promoted its core set of MPEG-G specifications, i.e., transport and compression technologies, to Draft International Standard (DIS) stage. Such parts of the standard provide new transport technologies (ISO/IEC 23092-1) and compression technologies (ISO/IEC 23092-2) supporting rich functionality for the access and transport including streaming of genomic data by interoperable applications. Reference software (ISO/IEC 23092-4) and conformance (ISO/IEC 23092-5) will reach this stage in the next 12 months.

Research aspects: the main focus of this work item is compression and transport is still in its infancy. Therefore, research on the actual delivery for compressed DNA information as well as its processing is solicited.

What else happened at MPEG122?

  • Requirements is exploring new video coding tools dealing with low-complexity and process enhancements.
  • The activity around coded representation of neural networks has defined a set of vital use cases and is now calling for test data to be solicited until the next meeting.
  • The MP4 registration authority (MP4RA) has a new awesome web site http://mp4ra.org/.
  • MPEG-DASH is finally approving and working the 3rd edition comprising consolidated version of recent amendments and corrigenda.
  • CMAF started an exploration on multi-stream support, which could be relevant for tiled streaming and multi-channel audio.
  • OMAF kicked-off its activity towards a 2nd edition enabling support for 3DoF+ and social VR with the plan going to committee draft (CD) in Oct’18. Additionally, there’s a test framework proposed, which allows to assess performance of various OMAF tools. Its main focus is on video but MPEG’s audio subgroup has a similar framework to enable subjective testing. It could be interesting seeing these two frameworks combined in one way or the other.
  • MPEG-I architectures (yes plural) are becoming mature and I think this technical report will become available very soon. In terms of video, MPEG-I looks more closer at 3DoF+ defining common test conditions and a call for proposals (CfP) planned for MPEG123 in Ljubljana, Slovenia. Additionally, explorations for 6DoF and compression of dense representation of light fields are ongoing and have been started, respectively.
  • Finally, point cloud compression (PCC) is in its hot phase of core experiments for various coding tools resulting into updated versions of the test model and working draft.
Research aspects: In this section I would like to focus on DASH, CMAF, and OMAF. Multi-stream support, as mentioned above, is relevant for tiled streaming and multi-channel audio which has been recently studied in the literature and is also highly relevant for industry. The efficient storage and streaming of such kind of content within the file format is an important aspect and often underrepresented in both research and standardization. The goal here is to keep the overhead low while maximizing the utility of the format to enable certain functionalities. OMAF now targets the social VR use case, which has been discussed in the research literature for a while and, finally, makes its way into standardization. An important aspect here is both user and quality of experience, which requires intensive subjective testing.

Finally, on May 10 MPEG will celebrate 30 years as its first meeting dates back to 1988 in Ottawa, Canada with around 30 attendees. The 122nd meeting had more than 500 attendees and MPEG has around 20 active work items. A total of more than 170 standards have been produces (that’s approx. six standards per year) where some standards have up to nine editions like the HEVC standards. Overall, MPEG is responsible for more that 23% of all JTC 1 standards and some of them showing extraordinary longevity regarding extensions, e.g., MPEG-2 systems (24 years), MPEG-4 file format (19 years), and AVC (15 years). MPEG standards serve billions of users (e.g., MPEG-1 video, MP2, MP3, AAC, MPEG-2, AVC, ISOBMFF, DASH). Some — more precisely five — standards have receive Emmy awards in the past (MPEG-1, MPEG-2, AVC (2x), and HEVC).
Tag cloud generated from all existing MPEG press releases.
Thus, happy birthday MPEG! In today’s society starts the high performance era with 30 years, basically the time of “compression”, i.e., we apply all what we learnt and live out everything, truly optimistic perspective for our generation X (millennials) standards body!