Showing posts with label MPEG. Show all posts
Showing posts with label MPEG. Show all posts

Monday, October 14, 2024

Happy World Standards Day 2024

As we celebrate World Standards Day, it's important to recognize the monumental advancements the MPEG community has made over the past year. These achievements continue to influence multimedia standards worldwide, playing a crucial role in ensuring seamless, high-quality digital experiences.

  1. ISO Base Media File Format (8th Edition): This standard has been pivotal for media streaming applications, particularly for formats like DASH (Dynamic Adaptive Streaming over HTTP) and CMAF (Common Media Application Format). The latest update facilitates more seamless media switching and continuous presentation, optimizing the user experience across different devices.
  2. Neural Network Compression (2nd Edition): With AI technologies rapidly evolving, MPEG's neural network compression standard addresses the need for efficient storage and inference in multimedia systems. The second edition enhances reference software, providing robust tools for handling complex neural networks in applications such as image and video processing.
  3. Low Latency, Low Complexity LiDAR Coding: As industries like autonomous vehicles and smart cities expand, this standard addresses the need for efficient and real-time processing of LiDAR data. The MPEG community has developed compression techniques that maintain low latency and complexity, enabling faster decision-making for autonomous systems.
  4. MPEG-DASH (6th Edition): The 6th edition of MPEG-DASH brings exciting improvements in adaptive streaming. Key updates include support for new CMCD parameters for better content management and a background mode that allows players to receive updates without disrupting media playback. These advancements significantly enhance streaming efficiency and flexibility.
  5. Video Coding for Machines (VCM): A significant addition this year has been the introduction of Video Coding for Machines. This emerging standard focuses on machine vision applications, where efficient encoding and decoding are crucial for machine learning tasks such as object detection and recognition. This innovation caters to the increasing integration of machine-based analytics in multimedia systems.
  6. Immersive Media and Volumetric Video: MPEG’s work on volumetric video coding and standards for immersive media continues to push the boundaries of AR/VR technologies. This ensures that immersive content can be delivered across various platforms with improved consistency and performance.

These highlights exemplify MPEG's commitment to fostering innovation through multimedia standards, shaping the future of digital content. On this World Standards Day, let’s celebrate the efforts that keep the digital ecosystem thriving!

Monday, September 16, 2024

MPEG news: a report from the 147th meeting

This blog post is based on the MPEG press release and has been modified/updated here to focus on and highlight research aspects. This version of the blog post will also be posted at ACM SIGMM Records.

The 147th MPEG meeting was held in Sapporo, Japan from 15-19 July 2024, and the official press release can be found here. It comprises the following highlights:
  • ISO Base Media File Format*: The 8th edition was promoted to Final Draft International Standard, supporting seamless media presentation for DASH and CMAF.
  • Syntactic Description Language: Finalized as an independent standard for MPEG-4 syntax.
  • Low-Overhead Image File Format*: First milestone achieved for small image handling improvements.
  • Neural Network Compression*: Second edition for conformance and reference software promoted.
  • Internet of Media Things (IoMT): Progress made on reference software for distributed media tasks.
* … covered in this blog post and expanded with possible research aspects.

8th edition of ISO Base Media File Format

The ever-growing expansion of the ISO/IEC 14496-12 ISO base media file format (ISOBMFF) application area has continuously brought new technologies to the standards. During the last couple of years, MPEG Systems (WG 3) has received new technologies on ISOBMFF for more seamless support of ISO/IEC 23009 Dynamic Adaptive Streaming over HTTP (DASH) and ISO/IEC 23000-19 Common Media Application Format (CMAF) leading to the development of the 8th edition of ISO/IEC14496-12.

The new edition of the standard includes new technologies to explicitly indicate the set of tracks representing various versions of the media presentation of a single media for seamless switching and continuous presentation. Such technologies will enable more efficient processing of the ISOBMFF formatted files for DASH manifest or CMAF Fragments.

Research aspects: The central research aspect of the 8th edition of ISOBMFF, which “will enable more efficient processing,” will undoubtedly be its evaluation compared to the state-of-the-art. Standards typically define a format, but how to use it is left open to implementers. Therefore, the implementation is a crucial aspect and will allow for a comparison of performance. One such implementation of ISOBMFF is GPAC, which most likely will be among the first to implement these new features.

Low-Overhead Image File Format

ISO/IEC 23008-12 image format specification defines generic structures for storing image items and sequences based on ISO/IEC 14496-12 ISO base media file format (ISOBMFF). As it allows the use of various high-performance video compression standards for a single image or a series of images, it has been adopted by the market quickly. However, it was challenging to use it for very small-sized images such as icons or emojis. While the initial design of the standard was versatile and useful for a wide range of applications, the size of headers becomes an overhead for applications with tiny images. Thus, Amendment 3 of ISO/IEC 23008-12 low-overhead image file format aims to address this use case by adding a new compact box for storing metadata instead of the ‘Meta’ box to lower the size of the overhead.

Research aspects: The issue regarding header sizes of ISOBMFF for small files or low bitrate (in the case of video streaming) was known for some time. Therefore, amendments in these directions are appreciated while further performance evaluations are needed to confirm design choices made at this initial step of standardization.

Neural Network Compression

An increasing number of artificial intelligence applications based on artificial neural networks, such as edge-based multimedia content processing, content-adaptive video post-processing filters, or federated training, need to exchange updates of neural networks (e.g., after training on additional data or fine-tuning to specific content). For this purpose, MPEG developed a second edition of the standard for coding of neural networks for multimedia content description and analysis (NNC, ISO/IEC 15938-17, published in 2024), adding syntax for differential coding of neural network parameters as well as new coding tools. Trained models can be compressed to at least 10-20% for several architectures, even below 3%, of their original size without performance loss. Higher compression rates are possible at moderate performance degradation. In a distributed training scenario, a model update after a training iteration can be represented at 1% or less of the base model size on average without sacrificing the classification performance of the neural network.

In order to facilitate the implementation of the standard, the accompanying standard ISO/IEC 15938-18 has been updated to cover the second edition of ISO/IEC 15938-17. This standard provides a reference software for encoding and decoding NNC bitstreams, as well as a set of conformance guidelines and reference bitstreams for testing of decoder implementations. The software covers the functionalities of both editions of the standard, and can be configured to test different combinations of coding tools specified by the standard.

Research aspects: The reference software for NNC, together with the reference software for audio/video codecs, are vital tools for building complex multimedia systems and its (baseline) evaluation with respect to compression efficiency only (not speed). This is because reference software is usually designed for functionality (i.e., compression in this case) and not performance.

The 148th MPEG meeting will be held in Kemer, Türkiye, from November 04-08, 2024. Click here for more information about MPEG meetings and their developments.

Saturday, May 18, 2024

MPEG news: a report from the 146th meeting

 This blog post is based on the MPEG press release and has been modified/updated here to focus on and highlight research aspects. This version of the blog post will also be posted at ACM SIGMM Records.


The 146th MPEG meeting was held in Rennes, France from 22-26 April 2024, and the official press release can be found here. It comprises the following highlights:
  • AI-based Point Cloud Coding*: Call for proposals focusing on AI-driven point cloud encoding for applications such as immersive experiences and autonomous driving.
  • Object Wave Compression*: Call for interest in object wave compression for enhancing computer holography transmission.
  • Open Font Format: Committee Draft of the fifth edition, overcoming previous limitations like the 64K glyph encoding constraint.
  • Scene Description: Ratified second edition, integrating immersive media objects and extending support for various data types.
  • MPEG Immersive Video (MIV): New features in the second edition, enhancing the compression of immersive video content.
  • Video Coding Standards: New editions of AVC, HEVC, and Video CICP, incorporating additional SEI messages and extended multiview profiles.
  • Machine-Optimized Video Compression*: Advancement in optimizing video encoders for machine analysis.
  • MPEG-I Immersive Audio*: Reached Committee Draft stage, supporting high-quality, real-time interactive audio rendering for VR/AR/MR.
  • Video-based Dynamic Mesh Coding (V-DMC)*: Committee Draft status for efficiently storing and transmitting dynamic 3D content.
  • LiDAR Coding*: Enhanced efficiency and responsiveness in LiDAR data processing with the new standard reaching Committee Draft status.
* ... covered in this column.

AI-based Point Cloud Coding

MPEG issued a Call for Proposals (CfP) on AI-based point cloud coding technologies as a result from ongoing explorations regarding use cases, requirements, and the capabilities of AI-driven point cloud encoding, particularly for dynamic point clouds.

With recent significant progress in AI-based point cloud compression technologies, MPEG is keen on studying and adopting AI methodologies. MPEG is specifically looking for learning-based codecs capable of handling a broad spectrum of dynamic point clouds, which are crucial for applications ranging from immersive experiences to autonomous driving and navigation. As the field evolves rapidly, MPEG expects to receive multiple innovative proposals. These may include a unified codec, capable of addressing multiple types of point clouds, or specialized codecs tailored to meet specific requirements, contingent upon demonstrating clear advantages. MPEG has therefore publicly called for submissions of AI-based point cloud codecs, aimed at deepening the understanding of the various options available and their respective impacts. Submissions that meet the requirements outlined in the call will be invited to provide source code for further analysis, potentially laying the groundwork for a new standard in AI-based point cloud coding. MPEG welcomes all relevant contributions and looks forward to evaluating the responses.

Research aspects: In-depth analysis of algorithms, techniques, and methodologies, including a comparative study of various AI-driven point cloud compression techniques to identify the most effective approaches. Other aspects include creating or improving learning-based codecs that can handle dynamic point clouds as well as metrics for evaluating the performance of these codecs in terms of compression efficiency, reconstruction quality, computational complexity, and scalability. Finally, the assessment of how improved point cloud compression can enhance user experiences would be worthwhile to consider here also.

Object Wave Compression

A Call for Interest (CfI) in object wave compression has been issued by MPEG. Computer holography, a 3D display technology, utilizes a digital fringe pattern called a computer-generated hologram (CGH) to reconstruct 3D images from input 3D models. Holographic near-eye displays (HNEDs) reduce the need for extensive pixel counts due to their wearable design, positioning the display near the eye. This positions HNEDs as frontrunners for the early commercialization of computer holography, with significant research underway for product development. Innovative approaches facilitate the transmission of object wave data, crucial for CGH calculations, over networks. Object wave transmission offers several advantages, including independent treatment from playback device optics, lower computational complexity, and compatibility with video coding technology. These advancements open doors for diverse applications, ranging from entertainment experiences to real- time two-way spatial transmissions, revolutionizing fields such as remote surgery and virtual collaboration. As MPEG explores object wave compression for computer holography transmission, a Call for Interest seeks contributions to address market needs in this field.

Research aspects: Apart from compression efficiency, lower computation complexity, and compatibility with video coding technology, there is a range of research aspects, including the design, implementation, and evaluation of coding algorithms within the scope of this CfI. The QoE of computer-generated holograms (CGHs) together with holographic near-eye displays (HNEDs) is yet another dimension to be explored.

Machine-Optimized Video Compression

MPEG started working on a technical report regarding to the "Optimization of Encoders and Receiving Systems for Machine Analysis of Coded Video Content". In recent years, the efficacy of machine learning-based algorithms in video content analysis has steadily improved. However, an encoder designed for human consumption does not always produce compressed video conducive to effective machine analysis. This challenge lies not in the compression standard but in optimizing the encoder or receiving system. The forthcoming technical report addresses this gap by showcasing technologies and methods that optimize encoders or receiving systems to enhance machine analysis performance.

Research aspects: Video (and audio) coding for machines has been recently addressed by MPEG Video and Audio working groups, respectively. MPEG Joint Video Experts Team with ITU-T SG16, also known as JVET, joined this space with a technical report, but research aspects remain unchanged, i.e., coding efficiency, metrics, and quality aspects for machine analysis of compressed/coded video content.

MPEG-I Immersive Audio

MPEG Audio Coding enters the "immersive space" with MPEG-I immersive audio and its corresponding reference software. The MPEG-I immersive audio standard sets a new benchmark for compact and lifelike audio representation in virtual and physical spaces, catering to Virtual, Augmented, and Mixed Reality (VR/AR/MR) applications. By enabling high-quality, real-time interactive rendering of audio content with six degrees of freedom (6DoF), users can experience immersion, freely exploring 3D environments while enjoying dynamic audio. Designed in accordance with MPEG's rigorous standards, MPEG-I immersive audio ensures efficient distribution across bandwidth-constrained networks without compromising on quality. Unlike proprietary frameworks, this standard prioritizes interoperability, stability, and versatility, supporting both streaming and downloadable content while seamlessly integrating with MPEG-H 3D audio compression. MPEG-I's comprehensive modeling of real-world acoustic effects, including sound source properties and environmental characteristics, guarantees an authentic auditory experience. Moreover, its efficient rendering algorithms balance computational complexity with accuracy, empowering users to finely tune scene characteristics for desired outcomes.

Research aspects: Evaluating QoE of MPEG-I immersive audio-enabled environments as well as the efficient audio distribution across bandwidth-constrained networks without compromising on audio quality are two important research aspects to be addressed by the research community.

Video-based Dynamic Mesh Coding (V-DMC)

Video-based Dynamic Mesh Compression (V-DMC) represents a significant advancement in 3D content compression, catering to the ever-increasing complexity of dynamic meshes used across various applications, including real-time communications, storage, free-viewpoint video, augmented reality (AR), and virtual reality (VR). The standard addresses the challenges associated with dynamic meshes that exhibit time-varying connectivity and attribute maps, which were not sufficiently supported by previous standards. Video-based Dynamic Mesh Compression promises to revolutionize how dynamic 3D content is stored and transmitted, allowing more efficient and realistic interactions with 3D content globally.

Research aspects: V-DMC aims to allow "more efficient and realistic interactions with 3D content", which are subject to research, i.e., compression efficiency vs. QoE in constrained networked environments.

Low Latency, Low Complexity LiDAR Coding

Low Latency, Low Complexity LiDAR Coding underscores MPEG's commitment to advancing coding technologies required by modern LiDAR applications across diverse sectors. The new standard addresses critical needs in the processing and compression of LiDAR-acquired point clouds, which are integral to applications ranging from automated driving to smart city management. It provides an optimized solution for scenarios requiring high efficiency in both compression and real-time delivery, responding to the increasingly complex demands of LiDAR data handling. LiDAR technology has become essential for various applications that require detailed environmental scanning, from autonomous vehicles navigating roads to robots mapping indoor spaces. The Low Latency, Low Complexity LiDAR Coding standard will facilitate a new level of efficiency and responsiveness in LiDAR data processing, which is critical for the real-time decision-making capabilities needed in these applications. This standard builds on comprehensive analysis and industry feedback to address specific challenges such as noise reduction, temporal data redundancy, and the need for region-based quality of compression. The standard also emphasizes the importance of low latency coding to support real-time applications, essential for operational safety and efficiency in dynamic environments.

Research aspects: This standard effectively tackles the challenge of balancing high compression efficiency with real-time capabilities, addressing these often conflicting goals. Researchers may carefully consider these aspects and make meaningful contributions.

The 147th MPEG meeting will be held in Sapporo, Japan, from July 15-19, 2024. Click here for more information about MPEG meetings and their developments.

Friday, May 17, 2024

MPEG news: a report from the 145th meeting

This blog post is based on the MPEG press release and has been modified/updated here to focus on and highlight research aspects. This version of the blog post will also be posted at ACM SIGMM Records.


The 145th MPEG meeting was held online from 22-26 January 2024, and the official press release can be found here. It comprises the following highlights:
  • Latest Edition of the High Efficiency Image Format Standard Unveils Cutting-Edge Features for Enhanced Image Decoding and Annotation
  • MPEG Systems finalizes Standards supporting Interoperability Testing
  • MPEG finalizes the Third Edition of MPEG-D Dynamic Range Control
  • MPEG finalizes the Second Edition of MPEG-4 Audio Conformance
  • MPEG Genomic Coding extended to support Transport and File Format for Genomic Annotations
  • MPEG White Paper: Neural Network Coding (NNC) – Efficient Storage and Inference of Neural Networks for Multimedia Applications
This column will focus on the High Efficiency Image Format (HEIF) and interoperability testing. As usual, a brief update on MPEG-DASH et al. will be provided.

High Efficiency Image Format (HEIF)

The High Efficiency Image Format (HEIF) is a widely adopted standard in the imaging industry that continues to grow in popularity. At the 145th MPEG meeting, MPEG Systems (WG 3) ratified its third edition, which introduces exciting new features, such as progressive decoding capabilities that enhance image quality through a sequential, single-decoder instance process. With this enhancement, users can decode bitstreams in successive steps, with each phase delivering perceptible improvements in image quality compared to the preceding step. Additionally, the new edition introduces a sophisticated data structure that describes the spatial configuration of the camera and outlines the unique characteristics responsible for generating the image content. The update also includes innovative tools for annotating specific areas in diverse shapes, adding a layer of creativity and customization to image content manipulation. These annotation features cater to the diverse needs of users across various industries.

Research aspects: Progressive coding has been a part of modern image coding formats for some time now. However, the inclusion of supplementary metadata provides an opportunity to explore new use cases that can benefit both user experience (UX) and quality of experience (QoE) in academic settings.

Interoperability Testing

MPEG standards typically comprise format definitions (or specifications) to enable interoperability among products and services from different vendors. Interestingly, MPEG goes beyond these format specifications and provides reference software and conformance bitstreams, allowing conformance testing.

At the 145th MPEG meeting, MPEG Systems (WG 3) finalized two standards comprising conformance and reference software by promoting it to the Final Draft International Standard (FDIS), the final stage of standards development. The finalized standards, ISO/IEC 23090-24 and ISO/IEC 23090-25, showcase the pinnacle of conformance and reference software for scene description and visual volumetric video-based coding data, respectively.

ISO/IEC 23090-24 focuses on conformance and reference software for scene description, providing a comprehensive reference implementation and bitstream tailored for conformance testing related to ISO/IEC 23090-14, scene description. This standard opens new avenues for advancements in scene depiction technologies, setting a new standard for conformance and software reference in this domain.

Similarly, ISO/IEC 23090-25 targets conformance and reference software for the carriage of visual volumetric video-based coding data. With a dedicated reference implementation and bitstream, this standard is poised to elevate the conformance testing standards for ISO/IEC 23090-10, the carriage of visual volumetric video-based coding data. The introduction of this standard is expected to have a transformative impact on the visualization of volumetric video data.

At the same 145th MPEG meeting, MPEG Audio Coding (WG6) celebrated the completion of the second edition of ISO/IEC 14496-26, audio conformance, elevating it to the Final Draft International Standard (FDIS) stage. This significant update incorporates seven corrigenda and five amendments into the initial edition, originally published in 2010.

ISO/IEC 14496-26 serves as a pivotal standard, providing a framework for designing tests to ensure the compliance of compressed data and decoders with the requirements outlined in ISO/IEC 14496-3 (MPEG-4 Audio). The second edition reflects an evolution of the original, addressing key updates and enhancements through diligent amendments and corrigenda. This latest edition, now at the FDIS stage, marks a notable stride in MPEG Audio Coding's commitment to refining audio conformance standards and ensuring the seamless integration of compressed data within the MPEG-4 Audio framework.

These standards will be made freely accessible for download on the official ISO website, ensuring widespread availability for industry professionals, researchers, and enthusiasts alike.

Research aspects: Reference software and conformance bitstreams often serve as the basis for further research (and development) activities and, thus, are highly appreciated. For example, reference software of video coding formats (e.g., HM for HEVC, VM for VVC) can be used as a baseline when improving coding efficiency or other aspects of the coding format.

MPEG-DASH Updates

The current status of MPEG-DASH is shown in the figure below.
MPEG-DASH Status, January 2024.

The following most notable aspects have been discussed at the 145th MPEG meeting and adopted into ISO/IEC 23009-1, which will eventually become the 6th edition of the MPEG-DASH standard:
  • It is now possible to pass CMCD parameters sid and cid via the MPD URL.
  • Segment duration patterns can be signaled using SegmentTimeline.
  • Definition of a background mode of operation, which allows a DASH player to receive MPD updates and listen to events without possibly decrypting or rendering any media.
Additionally, the technologies under consideration (TuC) document has been updated with means to signal maximum segment rate, extend copyright license signaling, and improve haptics signaling in DASH. Finally, REAP is progressing towards FDIS but not yet there and most details will be discussed in the upcoming AhG period.

The 146th MPEG meeting will be held in Rennes, France, from April 22-26, 2024. Click here for more information about MPEG meetings and their developments.


Tuesday, November 28, 2023

MPEG news: a report from the 144th meeting

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects. Additionally, this version of the blog post will also be posted at ACM SIGMM Records.

MPEG News Archive

The 144th MPEG meeting was held in Hannover, Germany! For those interested, the press release with all the details is available. It’s great to see progress being made in person (cf. also the group pictures below).

Attendees of the 144th MPEG meeting in Hannover, Germany.
Attendees of the 144th MPEG meeting in Hannover, Germany.

The main outcome of this meeting is as follows:

  • MPEG issues Call for Learning-Based Video Codecs for Study of Quality Assessment
  • MPEG evaluates Call for Proposals on Feature Compression for Video Coding for Machines
  • MPEG progresses ISOBMFF-related Standards for the Carriage of Network Abstraction Layer Video Data
  • MPEG enhances the Support of Energy-Efficient Media Consumption
  • MPEG ratifies the Support of Temporal Scalability for Geometry-based Point Cloud Compression
  • MPEG reaches the First Milestone for the Interchange of 3D Graphics Formats
  • MPEG announces Completion of Coding of Genomic Annotations

We have modified the press release to cater to the readers of ACM SIGMM Records and highlighted research on video technologies. This edition of the MPEG column focuses on MPEG Systems-related standards and visual quality assessment. As usual, the column will end with an update on MPEG-DASH.

Visual Quality Assessment

MPEG does not create standards in the visual quality assessment domain. However, it conducts visual quality assessments for its standards during various stages of the standardization process. For instance, it evaluates responses to call for proposals, conducts verification tests of its final standards, and so on. MPEG Visual Quality Assessment (AG 5) issued an open call to study quality assessment for learning-based video codecs. AG 5 has been conducting subjective quality evaluations for coded video content and studying their correlation with objective quality metrics. Most of these studies have focused on the High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) standards. To facilitate the study of visual quality, MPEG maintains the Compressed Video for the study of Quality Metrics (CVQM) dataset.

With the recent advancements in learning-based video compression algorithms, MPEG is now studying compression using these codecs. It is expected that reconstructed videos compressed using learning-based codecs will have different types of distortion compared to those induced by traditional block-based motion-compensated video coding designs. To gain a deeper understanding of these distortions and their impact on visual quality, MPEG has issued a public call related to learning-based video codecs. MPEG is open to inputs in response to the call and will invite responses that meet the call’s requirements to submit compressed bitstreams for further study of their subjective quality and potential inclusion into the CVQM dataset.

Considering the rapid advancements in the development of learning-based video compression algorithms, MPEG will keep this call open and anticipates future updates to the call.

Interested parties are kindly requested to contact the MPEG AG 5 Convenor Mathias Wien (wien@lfb.rwth- aachen.de) and submit responses for review at the 145th MPEG meeting in January 2024. Further details are given in the call, issued as AG 5 document N 104 and available from the mpeg.org website.

Research aspects: Learning-based data compression (e.g., for image, audio, video content) is a hot research topic. Research on this topic relies on datasets offering a set of common test sequences, sometimes also common test conditions, that are publicly available and allow for comparison across different schemes. MPEG’s Compressed Video for the study of Quality Metrics (CVQM) dataset is such a dataset, available here, and ready to be used also by researchers and scientists outside of MPEG. The call mentioned above is open for everyone inside/outside of MPEG and allows researchers to participate in international standards efforts (note: to attend meetings, one must become a delegate of a national body).

MPEG Systems-related Standards

At the 144th MPEG meeting, MPEG Systems (WG 3) produced three news-worthy items as follows:

  • Progression of ISOBMFF-related standards for the carriage of Network Abstraction Layer (NAL) video data.
  • Enhancement of the support of energy-efficient media consumption.
  • Support of temporal scalability for geometry-based Point Cloud Compression (PPC).

ISO/IEC 14496-15, a part of the family of ISOBMFF-related standards, defines the carriage of Network Abstract Layer (NAL) unit structured video data such as Advanced Video Coding (AVC), High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), Essential Video Coding (EVC), and Low Complexity Enhancement Video Coding (LCEVC). This standard has been further improved with the approval of the Final Draft Amendment (FDAM), which adds support for enhanced features such as Picture-in-Picture (PiP) use cases enabled by VVC.

In addition to the improvements made to ISO/IEC 14496-15, separately developed amendments have been consolidated in the 7th edition of the standard. This edition has been promoted to Final Draft International Standard (FDIS), marking the final milestone of the formal standard development.

Another important standard in development is the 2nd edition of ISO/IEC14496-32 (file format reference software and conformance). This standard, currently at the Committee Draft (CD) stage of development, is planned to be completed and reach the status of Final Draft International Standard (FDIS) by the beginning of 2025. This standard will be essential for industry professionals who require a reliable and standardized method of verifying the conformance of their implementation.

MPEG Systems (WG 3) also promoted ISO/IEC 23001-11 (energy-efficient media consumption (green metadata)) Amendment 1 to Final Draft Amendment (FDAM). This amendment introduces energy-efficient media consumption (green metadata) for Essential Video Coding (EVC) and defines metadata that enables a reduction in decoder power consumption. At the same time, ISO/IEC 23001-11 Amendment 2 has been promoted to the Committee Draft Amendment (CDAM) stage of development. This amendment introduces a novel way to carry metadata about display power reduction encoded as a video elementary stream interleaved with the video it describes. The amendment is expected to be completed and reach the status of Final Draft Amendment (FDAM) by the beginning of 2025.

Finally, MPEG Systems (WG 3) promoted ISO/IEC 23090-18 (carriage of geometry-based point cloud compression data) Amendment 1 to Final Draft Amendment (FDAM). This amendment enables the compression of a single elementary stream of point cloud data using ISO/IEC 23090-9 (geometry-based point cloud compression) and storing it in more than one track of ISO Base Media File Format (ISOBMFF)-based files. This enables support for applications that require multiple frame rates within a single file and introduces a track grouping mechanism to indicate multiple tracks carrying a specific temporal layer of a single elementary stream separately.

Research aspects: MPEG Systems usually provides standards on top of existing compression standards, enabling efficient storage and delivery of media data (among others). Researchers may use these standards (including reference software and conformance bitstreams) to conduct research in the general area of multimedia systems (cf. ACM MMSys) or, specifically on green multimedia systems (cf. ACM GMSys).

MPEG-DASH Updates

The current status of MPEG-DASH is shown in the figure below with only minor updates compared to the last meeting.

MPEG-DASH Status, October 2023.

In particular, the 6th edition of MPEG-DASH is scheduled for 2024 but may not include all amendments under development. An overview of existing amendments can be found in the blog post from the last meeting. Current amendments have been (slightly) updated and progressed toward completion in the upcoming meetings. The signaling of haptics in DASH has been discussed and accepted for inclusion in the Technologies under Consideration (TuC) document. The TuC document comprises candidate technologies for possible future amendments to the MPEG-DASH standard and is publicly available here.

Research aspects: MPEG-DASH has been heavily researched in the multimedia systems, quality, and communications research communities. Adding haptics to MPEG-DASH would provide another dimension worth considering within research, including, but not limited to, performance aspects and Quality of Experience (QoE).

The 145th MPEG meeting will be online from January 22-26, 2024. Click here for more information about MPEG meetings and their developments.

Friday, August 11, 2023

MPEG news: a report from the 143rd meeting

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects. Additionally, this version of the blog post will also be posted at ACM SIGMM Records.

MPEG News Archive

The 143rd MPEG meeting took place in person in Geneva, Switzerland. The official press release can be accessed here and includes the following details:

  • MPEG finalizes the Carriage of Uncompressed Video and Images in ISOBMFF
  • MPEG reaches the First Milestone for two ISOBMFF Enhancements
  • MPEG ratifies Third Editions of VVC and VSEI
  • MPEG reaches the First Milestone of AVC (11th Edition) and HEVC Amendment
  • MPEG Genomic Coding extended to support Joint Structured Storage and Transport of Sequencing Data, Annotation Data, and Metadata
  • MPEG completes Reference Software and Conformance for Geometry-based Point Cloud Compression

We have adjusted the press release to suit the audience here and emphasized research on video technologies. This blog post centers around ISOBMFF and video codecs. As always, I will conclude with an update on MPEG-DASH.

ISOBMFF Enhancements

The ISO Base Media File Format (ISOBMFF) supports the carriage of a wide range of media data such as video, audio, point clouds, haptics, etc., which has now been further extended to uncompressed videos and images.

ISO/IEC 23001-17 – Carriage of uncompressed video and images in ISOBMFF – specifies how uncompressed 2D image and video data is carried in files that comply with the ISOBMFF family of standards. This encompasses a range of data types, including monochromatic and color data, transparency (alpha) information, and depth information. The standard enables the industry to effectively exchange uncompressed video and image data while utilizing all additional information provided by the ISOBMFF, such as timing, color space, and sample aspect ratio for interoperable interpretation and/or display of uncompressed video and image data.

ISO/IEC 14496-15 (based on ISOBMFF), provides the basis for "network abstraction layer (NAL) unit structured video coding formats" such as AVC, HEVC, and VVC. The current version is the 6th edition, which has been amended to support neural-network post-filter supplemental enhancement information (SEI) messages. This amendment defines the carriage of the neural-network post-filter characteristics (NNPFC) SEI messages and the neural-network post-filter activation (NNPFA) SEI messages to enable the delivery of (i) a base post-processing filter and (ii) a series of neural network updates synchronized with the input video pictures/frames.

Research aspects: While the former, the carriage of uncompressed video and images in ISOBMFF, seems to be something obvious to be supported within a file format, the latter enables to use neural network-based post-processing filters to enhance video quality after the decoding process, which is an active field of research. The current extensions with the file format provide a baseline for the evaluation (cf. also next section). 

Video Codec Enhancements

MPEG finalized the specifications of the third editions of the Versatile Video Coding (VVC, ISO/IEC 23090-3) and the Versatile Supplemental Enhancement Information (VSEI, ISO/IEC 23002-7) standards. Additionally, MPEG issued the Committee Draft (CD) text of the eleventh edition of the Advanced Video Coding (AVC, ISO/IEC 14496-10) standard and the Committee Draft Amendment (CDAM) text on top of the High Efficiency Video Coding standard (HEVC, ISO/IEC 23008-2).

These SEI messages include two systems-related SEI messages, (a) one for signaling of green metadata as specified in ISO/IEC 23001-11 and (b) the other for signaling of an alternative video decoding interface for immersive media as specified in ISO/IEC 23090-13. Furthermore, the neural network post-filter characteristics SEI message and the neural-network post-processing filter activation SEI message have been added to AVC, HEVC, and VVC.

The two SEI messages for describing and activating post-filters using neural network technology in video bitstreams could, for example, be used for reducing coding noise, spatial and temporal upsampling (i.e., super-resolution and frame interpolation), color improvement, or general denoising of the decoder output. The description of the neural network architecture itself is based on MPEG’s neural network representation standard (ISO/IEC 15938 17). As results from an exploration experiment have shown, neural network-based post-filters can deliver better results than conventional filtering methods. Processes for invoking these new post-filters have already been tested in a software framework and will be made available in an upcoming version of the VVC reference software (ISO/IEC 23090-16).

Research aspects: SEI messages for neural network post-filters (NNPF) for AVC, HEVC, and VVC, including systems supports within the ISOBMFF, is a powerful tool(box) for interoperable visual quality enhancements at the client. This tool(box) will (i) allow for Quality of Experience (QoE) assessments and (ii) enable the analysis thereof across codecs once integrated within the corresponding reference software. 

MPEG-DASH Updates

The current status of MPEG-DASH is depicted in the figure below:


The latest edition of MPEG-DASH is the 5th edition (ISO/IEC 23009-1:2022) which is publicly/freely available here. There are currently three amendments under development:

  • ISO/IEC 23009-1:2022 Amendment 1: Preroll, nonlinear playback, and other extensions. This amendment has been ratified already and is currently being integrated into the 5th edition of part 1 of the MPEG-DASH specification.
  • ISO/IEC 23009-1:2022 Amendment 2: EDRAP streaming and other extensions. EDRAP stands for Extended Dependent Random Access Point and at this meeting the Draft Amendment (DAM) has been approved. EDRAP increases the coding efficiency for random access and has been adopted within VVC.
  • ISO/IEC 23009-1:2022 Amendment 3: Segment sequences for random access and switching. This amendment is at Committee Draft Amendment (CDAM) stage, the first milestone of the formal standardization process. This amendment aims at improving tune-in time for low latency streaming.

Additionally, MPEG Technologies under Consideration (TuC) comprises a few new work items, such as content selection and adaptation logic based on device orientation and signaling of haptics data within DASH.

Finally, part 9 of MPEG-DASH -- redundant encoding and packaging for segmented live media (REAP) -- has been promoted to Draft International Standard (DIS). It is expected to be finalized in the upcoming meetings.

Research aspects: Random access has been extensively evaluated in the context of video coding but not (low latency) streaming. Additionally, the TuC item related to content selection and adaptation logic based on device orientation raises QoE issues to be further explored.

The 144th MPEG meeting will be held in Hannover from October 16-20, 2023. Click here for more information about MPEG meetings and their developments.

Tuesday, May 16, 2023

MPEG news: a report from the 142nd meeting

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects. Additionally, this version of the blog post will also be posted at ACM SIGMM Records.

The 142nd MPEG meeting was held face-to-face in Antalya, Türkiye. The official press release can be found here and comprises the following items:
  • MPEG issues Call for Proposals for Feature Coding for Machines
  • MPEG finalizes the 9th Edition of MPEG-2 Systems
  • MPEG reaches the First Milestone for Storage and Delivery of Haptics Data
  • MPEG completes 2nd Edition of Neural Network Coding (NNC)
  • MPEG completes Verification Test Report and Conformance and Reference Software for MPEG Immersive Video
  • MPEG finalizes work on metadata-based MPEG-D DRC Loudness Leveling
The press release text has been modified to match the target audience of ACM SIGMM and highlight research aspects targeting researchers in video technologies. This column focuses on the 9th edition of MPEG-2 Systems, storage and delivery of haptics data, neural network coding (NNC), MPEG immersive video (MIV), and updates on MPEG-DASH.

Feature Coding for Video Coding for Machines (FCVCM)

At the 142nd MPEG meeting, MPEG Technical Requirements (WG 2) issued a Call for Proposals (CfP) for technologies and solutions enabling efficient feature compression for video coding for machine vision tasks. This work on "Feature Coding for Video Coding for Machines (FCVCM)" aims at compressing intermediate features within neural networks for machine tasks. As applications for neural networks become more prevalent and the neural networks increase in complexity, use cases such as computational offload become more relevant to facilitate widespread deployment of applications utilizing such networks. Initially as part of the "Video Coding for Machines" activity, over the last four years, MPEG has investigated potential technologies for efficient compression of feature data encountered within neural networks. This activity has resulted in establishing a set of 'feature anchors' that demonstrate the achievable performance for compressing feature data using state-of-the-art standardized technology. These feature anchors include tasks performed on four datasets.

Research aspects: FCVCM is about compression, and the central research aspect here is compression efficiency which can be tested against a commonly agreed dataset (anchors). Additionally, it might be attractive to research which features are relevant for video coding for machines (VCM) and quality metrics in this emerging domain. One might wonder whether, in the future, robots or other AI systems will participate in subjective quality assessments.

9th Edition of MPEG-2 Systems

MPEG-2 Systems was first standardized in 1994, defining two container formats: program stream (e.g., used for DVDs) and transport stream. The latter, also known as MPEG-2 Transport Stream (M2TS), is used for broadcast and internet TV applications and services. MPEG-2 Systems has been awarded a Technology and Engineering Emmy® in 2013 and at the 142nd MPEG meeting, MPEG Systems (WG 3) ratified the 9th edition of ISO/IEC 13818-1 MPEG-2 Systems. The new edition includes support for Low Complexity Enhancement Video Coding (LCEVC), the youngest in the MPEG family of video coding standards on top of more than 50 media stream types, including, but not limited to, 3D Audio and Versatile Video Coding (VVC). The new edition also supports new options for signaling different kinds of media, which can aid the selection of the best audio or other media tracks for specific purposes or user preferences. As an example, it can indicate that a media track provides information about a current emergency.

Research aspects: MPEG container formats such as MPEG-2 Systems and ISO Base Media File Format are necessary for storing and delivering multimedia content but are often neglected in research. Thus, I would like to take up the cudgels on behalf of the MPEG Systems working group and argue that researchers should pay more attention on these container formats and conduct research and experiments for its efficient use with respect to multimedia storage and delivery.

Storage and Delivery of Haptics Data

At the 142nd MPEG meeting, MPEG Systems (WG 3) reached the first milestone for ISO/IEC 23090-32 entitled “Carriage of haptics data” by promoting the text to Committee Draft (CD) status. This specification enables the storage and delivery of haptics data (defined by ISO/IEC 23090-31) in the ISO Base Media File Format (ISOBMFF; ISO/IEC 14496-12). Considering the nature of haptics data composed of spatial and temporal components, a data unit with various spatial or temporal data packets is used as a basic entity like an access unit of audio-visual media. Additionally, an explicit indication of a silent period considering the sparse nature of haptics data, has been introduced in this draft. The standard is planned to be completed, i.e., to reach the status of Final Draft International Standard (FDIS), by the end of 2024.
Research aspects: Coding (ISO/IEC 23090-31) and carriage (ISO/IEC 23090-32) of haptics data goes hand in hand and needs further investigation concerning compression efficiency and storage/delivery performance with respect to various use cases.

Neural Network Coding (NNC)

Many applications of artificial neural networks for multimedia analysis and processing (e.g., visual and acoustic classification, extraction of multimedia descriptors, or image and video coding) utilize edge-based content processing or federated training. The trained neural networks for these applications contain many parameters (weights), resulting in a considerable size. Therefore, the MPEG standard for the compressed representation of neural networks for multimedia content description and analysis (NNC, ISO/IEC 15938-17, published in 2022) was developed, which provides a broad set of technologies for parameter reduction and quantization to compress entire neural networks efficiently.

Recently, an increasing number of artificial intelligence applications, such as edge-based content processing, content-adaptive video post-processing filters, or federated training, need to exchange updates of neural networks (e.g., after training on additional data or fine-tuning to specific content). Such updates include changes of the neural network parameters but may also involve structural changes in the neural network (e.g., when extending a classification method with a new class). In scenarios like federated training, these updates must be exchanged frequently, such that much more bandwidth over time is required, e.g., in contrast to the initial deployment of trained neural networks.
The second edition of NNC addresses these applications through efficient representation and coding of incremental updates and extending the set of compression tools that can be applied to both entire neural networks and updates. Trained models can be compressed to at least 10-20% and, for several architectures, even below 3% of their original size without performance loss. Higher compression rates are possible at moderate performance degradation. In a distributed training scenario, a model update after a training iteration can be represented at 1% or less of the base model size on average without sacrificing the classification performance of the neural network. NNC also provides synchronization mechanisms, particularly for distributed artificial intelligence scenarios, e.g., if clients in a federated learning environment drop out and later rejoin.

Research aspects: The incremental compression of neural networks enables various new use cases, which provides research opportunities for media coding and communication, including optimization thereof.

MPEG Immersive Video

At the 142nd MPEG meeting, MPEG Video Coding (WG 4) issued the verification test report of ISO/IEC 23090-12 MPEG immersive video (MIV) and completed the development of the conformance and reference software for MIV (ISO/IEC 23090-23), promoting it to the Final Draft International Standard (FDIS) stage.
MIV was developed to support the compression of immersive video content, in which multiple real or virtual cameras capture a real or virtual 3D scene. The standard enables the storage and distribution of immersive video content over existing and future networks for playback with 6 degrees of freedom (6DoF) of view position and orientation. MIV is a flexible standard for multi-view video plus depth (MVD) and multi-planar video (MPI) that leverages strong hardware support for commonly used video formats to compress volumetric video.

ISO/IEC 23090-23 specifies how to conduct conformance tests and provides reference encoder and decoder software for MIV. This draft includes 23 verified and validated conformance bitstreams spanning all profiles and encoding and decoding reference software based on version 15.1.1 of the test model for MPEG immersive video (TMIV). The test model, objective metrics, and other tools are publicly available at https://gitlab.com/mpeg-i-visual

Research aspects: Conformance and reference software are usually provided to facilitate product conformance testing, but it also provides researchers with a common platform and dataset, allowing for the reproducibility of their research efforts. Luckily, conformance and reference software are typically publicly available with an appropriate open source license.

MPEG-DASH Updates

Finally, I'd like to provide a quick update regarding MPEG-DASH, which has become a new part, namely redundant encoding and packaging for segmented live media (REAP; ISO/IEC 23009-9). The following figure provides the reference workflow for redundant encoding and packaging of live segmented media.
The reference workflow comprises (i) Ingest Media Presentation Description (I-MPD), (ii) Distribution Media Presentation Description (D-MPD), and (iii) Storage Media Presentation Description (S-MPD), among others; each defining constraints on the MPD and tracks of ISO base media file format (ISOBMFF).

Additionally, the MPEG-DASH Break out Group discussed various technologies under consideration, such as (a) combining HTTP GET requests, (b) signaling common media client data (CMCD) and common media server data (CMSD) in a MPEG-DASH MPD, (c) image and video overlays in DASH, and (d) updates on lower latency.

An updated overview of DASH standards/features can be found in the Figure below.

Research aspects: The REAP committee draft (CD) is publicly available feedback from academia and industry is appreciated. In particular, first performance evaluations or/and reports from proof of concept implementations/deployments would be insightful for the next steps in the standardization of REAP.

The 143rd MPEG meeting will be held in Geneva from July 17-21, 2023. Click here for more information about MPEG meetings and their developments.

    Saturday, January 14, 2023

    MPEG news: a report from the 140th meeting

    The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects. Additionally, this version of the blog post will also be posted at ACM SIGMM Records.


    After several years of online meetings, the 140th MPEG meeting was held as a face-to-face meeting in Mainz, Germany, and the official press release can be found here and comprises the following items:
    • MPEG evaluates the Call for Proposals on Video Coding for Machines
    • MPEG evaluates Call for Evidence on Video Coding for Machines Feature Coding
    • MPEG reaches the First Milestone for Haptics Coding
    • MPEG completes a New Standard for Video Decoding Interface for Immersive Media
    • MPEG completes Development of Conformance and Reference Software for Compression of Neural Networks
    • MPEG White Papers: (i) MPEG-H 3D Audio, (ii) MPEG-I Scene Description

    Video Coding for Machines

    Video coding is the process of compression and decompression of digital video content with the primary purpose of consumption by humans (e.g., watching a movie or video telephony). Recently, however, massive video data is more and more analyzed without human intervention leading to a new paradigm referred to as Video Coding for Machines (VCM) which targets both (i) conventional video coding and (ii) feature coding [1].

    At the 140th MPEG meeting, MPEG Technical Requirements (WG 2) evaluated the responses to the Call for Proposals (CfP) for technologies and solutions enabling efficient video coding for machine vision tasks. A total of 17 responses to this CfP were received, with responses providing various technologies such as (i) learning-based video codecs, (ii) block-based video codecs, (iii) hybrid solutions combining (i) and (ii), and (iv) novel video coding architectures. Several proposals use a region of interest-based approach, where different areas of the frames are coded in varying qualities.

    The responses to the CfP reported an improvement in compression efficiency of up to 57% on object tracking, up to 45% on instance segmentation, and up to 39% on object detection, respectively, in terms of bit rate reduction for equivalent task performance. Notably, all requirements defined by WG 2 were addressed by various proposals.

    Furthermore, MPEG Technical Requirements (WG 2) evaluated the responses to the Call for Evidence (CfE) for technologies and solutions enabling efficient feature coding for machine vision tasks. A total of eight responses to this CfE were received, of which six responses were considered valid based on the conditions described in the call:
    • For the tested video dataset increases in compression efficiency of up to 87% compared to the video anchor and over 90% compared to the feature anchor were reported.
    • For the tested image dataset, the compression efficiency can be increased by over 90% compared to both image and feature anchors.
    Research aspects: the main research area is still the same as described in my last blog post, i.e., compression efficiency (incl. probably runtime, sometimes called complexity) and Quality of Experience (QoE). Additional research aspects are related to the actual task for which video coding for machines is used (e.g., segmentation, object detection, as mentioned above).

    Video Decoding Interface for Immersive Media

    One of the most distinctive features of immersive media compared to 2D media is that only a tiny portion of the content is presented to the user. Such a portion is interactively selected at the time of consumption. For example, a user may not see the same point cloud object’s front and back sides simultaneously. Thus, for efficiency reasons and depending on the users’ viewpoint, only the front or back sides need to be delivered, decoded, and presented. Similarly, parts of the scene behind the observer may not need to be accessed.

    At the 140th MPEG meeting, MPEG Systems (WG 3) reached the final milestone of the Video Decoding Interface for Immersive Media (VDI) standard (ISO/IEC 23090-13) by promoting the text to Final Draft International Standard (FDIS). The standard defines the basic framework and specific implementation of this framework for various video coding standards, including support for application programming interface (API) standards that are widely used in practice, e.g., Vulkan by Khronos.

    The VDI standard allows for dynamic adaptation of video bitstreams to provide the decoded output pictures so that the number of actual video decoders can be smaller than the number of elementary video streams to be decoded. In other cases, virtual instances of video decoders can be associated with the portions of elementary streams required to be decoded. With this standard, the resource requirements of a platform running multiple virtual video decoder instances can be further optimized by considering the specific decoded video regions to be presented to the users rather than considering only the number of video elementary streams in use. The first edition of the VDI standard includes support for the following video coding standards: High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), and Essential Video Coding (EVC).

    Research aspect: VDI is also a promising standard to enable the implementation of viewport adaptive tile-based 360-degree video streaming, but its performance still needs to be assessed in various scenarios. However, requesting and decoding individual tiles within a 360-degree video streaming application is a prerequisite for enabling efficiency in such cases, and VDI provides the basis for its implementation.

    MPEG-DASH Updates

    Finally, I'd like to provide a quick update regarding MPEG-DASH, which seems to be in maintenance mode. As mentioned in my last blog post, amendments, Defects under Investigation (DuI), and Technologies under Consideration (TuC) are output documents, as well as a new working draft called Redundant encoding and packaging for segmented live media (REAP), which eventually will become ISO/IEC 23009-9. The scope of REAP is to define media formats for redundant encoding and packaging of live segmented media, media ingest, and asset storage. The current working draft can be downloaded here.

    Research aspects: REAP defines a distributed system and, thus, all research aspects related to such systems apply here, e.g., performance and scalability, just to name a few.

    The 141st MPEG meeting will be online from January 16-20, 2023. Click here for more information about MPEG meetings and their developments.

    Sunday, February 27, 2022

    MPEG news: a report from the 137th meeting

    The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects. Additionally, this version of the blog post will also be posted at ACM SIGMM Records.
    MPEG News Archive

    The 137th MPEG meeting was once again held as an online meeting, and the official press release can be found here and comprises the following items:
    • MPEG Systems Wins Two More Technology & Engineering Emmy® Awards
    • MPEG Audio Coding selects 6DoF Technology for MPEG-I Immersive Audio
    • MPEG Requirements issues Call for Proposals for Encoder and Packager Synchronization
    • MPEG Systems promotes MPEG-I Scene Description to the Final Stage
    • MPEG Systems promotes Smart Contracts for Media to the Final Stage
    • MPEG Systems further enhanced the ISOBMFF Standard
    • MPEG Video Coding completes Conformance and Reference Software for LCEVC
    • MPEG Video Coding issues Committee Draft of Conformance and Reference Software for MPEG Immersive Video
    • JVET produces Second Editions of VVC & VSEI and finalizes VVC Reference Software
    • JVET promotes Tenth Edition of AVC to Final Draft International Standard
    • JVET extends HEVC for High-Capability Applications up to 16K and Beyond
    • MPEG Genomic Coding evaluated Responses on New Advanced Genomics Features and Technologies
    • MPEG White Papers
      • Neural Network Coding (NNC)
      • Low Complexity Enhancement Video Coding (LCEVC)
      • MPEG Immersive video
    In this column, I’d like to focus on the Emmy® Awards, video coding updates (AVC, HEVC, VVC, and beyond), and a brief update about DASH (as usual).

    MPEG Systems Wins Two More Technology & Engineering Emmy® Awards

    MPEG Systems is pleased to report that MPEG is being recognized this year by the National Academy for Television Arts and Sciences (NATAS) with two Technology & Engineering Emmy® Awards, for (i) “standardization of font technology for custom downloadable fonts and typography for Web and TV devices and for (ii) “standardization of HTTP encapsulated protocols”, respectively.

    The first of these Emmys is related to MPEG’s Open Font Format (ISO/IEC 14496-22) and the second of these Emmys is related to MPEG Dynamic Adaptive Streaming over HTTP (i.e., MPEG DASH, ISO/IEC 23009). The MPEG DASH standard is the only commercially deployed international standard technology for media streaming over HTTP and it is widely used in many products. MPEG developed the first edition of the DASH standard in 2012 in collaboration with 3GPP and since then has produced four more editions amending the core specification by adding new features and extended functionality. Furthermore, MPEG has developed six other standards as additional “parts” of ISO/IEC 23009 enabling the effective use of the MPEG DASH standards with reference software and conformance testing tools, guidelines, and enhancements for additional deployment scenarios. MPEG DASH has dramatically changed the streaming industry by providing a standard that is widely adopted by various consortia such as 3GPP, ATSC, DVB, and HbbTV, and across different sectors. The success of this standard is due to its technical excellence, large participation of the industry in its development, addressing the market needs, and working with all sectors of industry all under ISO/IEC JTC 1/SC 29 MPEG Systems’ standard development practices and leadership.

    These are MPEG’s fifth and sixth Technology & Engineering Emmy® Awards (after MPEG-1 and MPEG-2 together with JPEG in 1996, Advanced Video Coding (AVC) in 2008, MPEG-2 Transport Stream in 2013, and ISO Base Media File Format in 2021) and MPEG’s seventh and eighth overall Emmy® Awards (including the Primetime Engineering Emmy® Awards for Advanced Video Coding (AVC) High Profile in 2008 and High-Efficiency Video Coding (HEVC) in 2017).

    I have been actively contributing to the MPEG DASH standard since its inception. My initial blog post dates back to 2010 and the first edition of MPEG DASH was published in 2012. A more detailed MPEG DASH timeline provides many pointers to the Institute of Information Technology (ITEC) at the Alpen-Adria-Universität Klagenfurt and its DASH activities that is now continued within the Christian Doppler Laboratory ATHENA. In the end, the MPEG DASH community of contributors to and users of the standards can be very proud of this achievement only after 10 years of the first edition being published. Thus, also happy 10th birthday MPEG DASH and what a nice birthday gift.

    Video Coding Updates

    In terms of video coding, there have been many updates across various standards’ projects at the 137th MPEG Meeting.

    Advanced Video Coding

    Starting with Advanced Video Coding (AVC), the 10th edition of Advanced Video Coding (AVC, ISO/IEC 14496-10 | ITU-T H.264) has been promoted to Final Draft International Standard (FDIS) which is the final stage of the standardization process. Beyond various text improvements, this specifies a new SEI message for describing the shutter interval applied during video capture. This can be variable in video cameras, and conveying this information can be valuable for analysis and post-processing of the decoded video.

    High-Efficiency Video Coding

    The High-Efficiency Video Coding (HEVC, ISO/IEC 23008-2 | ITU-T H.265) standard has been extended to support high-capability applications. It defines new levels and tiers providing support for very high bit rates and video resolutions up to 16K, as well as defining an unconstrained level. This will enable the usage of HEVC in new application domains, including professional, scientific, and medical video sectors.

    Versatile Video Coding

    The second editions of Versatile Video Coding (VVC, ISO/IEC 23090-3 | ITU-T H.266) and Versatile supplemental enhancement information messages for coded video bitstreams (VSEI, ISO/IEC 23002-7 | ITU-T H.274) have reached FDIS status. The new VVC version defines profiles and levels supporting larger bit depths (up to 16 bits), including some low-level coding tool modifications to obtain improved compression efficiency with high bit-depth video at high bit rates. VSEI version 2 adds SEI messages giving additional support for scalability, multi-view, display adaptation, improved stream access, and other use cases. Furthermore, a Committee Draft Amendment (CDAM) for the next amendment of VVC was issued to begin the formal approval process to enable linking VVC with the Green Metadata (ISO/IEC 23001-11) and Video Decoding Interface (ISO/IEC 23090-13) standards and add a new unconstrained level for exceptionally high capability applications such as certain uses in professional, scientific, and medical application scenarios. Finally, the reference software package for VVC (ISO/IEC 23090-16) was also completed with its achievement of FDIS status. Reference software is extremely helpful for developers of VVC devices, helping them in testing their implementations for conformance to the video coding specification.

    Beyond VVC

    The activities in terms of video coding beyond VVC capabilities, the Enhanced Compression Model (ECM 3.1) performance over VTM-11.0 + JVET-V0056 (i.e., VVC reference software) shows an improvement of close to 15% for Random Access Main 10. This is indeed encouraging and, in general, these activities are currently managed within two exploration experiments (EEs). The first is on neural network-based (NN) video coding technology (EE1) and the second is on enhanced compression beyond VVC capability (EE2). EE1 currently plans to further investigate (i) enhancement filters (loop and post) and (ii) super-resolution (JVET-Y2023). It will further investigate selected NN technologies on top of ECM 4 and the implementation of selected NN technologies in the software library, for platform-independent cross-checking and integerization. Enhanced Compression Model 4 (ECM 4) comprises new elements on MRL for intra, various GPM/affine/MV-coding improvements including TM, adaptive intra MTS, coefficient sign prediction, CCSAO improvements, bug fixes, and encoder improvements (JVET-Y2025). EE2 will investigate intra prediction improvements, inter prediction improvements, improved screen content tools, and improved entropy coding (JVET-Y2024).

    Research aspects: video coding performance is usually assessed in terms of compression efficiency or/and encoding runtime (time complexity). Another aspect is related to visual quality, its assessment, and metrics, specifically for neural network-based video coding technologies.

    The latest MPEG-DASH Update

    Finally, I’d like to provide a brief update on MPEG-DASH! At the 137th MPEG meeting, MPEG Systems issued a draft amendment to the core MPEG-DASH specification (i.e., ISO/IEC 23009-1) about Extended Dependent Random Access Point (EDRAP) streaming and other extensions which it will be further discussed during the Ad-hoc Group (AhG) period (please join the dash email list for further details/announcements). Furthermore, Defects under Investigation (DuI) and Technologies under Consideration (TuC) are available here.

    An updated overview of DASH standards/features can be found in the Figure below.

    Research aspects: in the Christian Doppler Laboratory ATHENA we aim to research and develop novel paradigms, approaches, (prototype) tools and evaluation results for the phases (i) multimedia content provisioning (i.e., video coding), (ii) content delivery (i.e., video networking), and (iii) content consumption (i.e., video player incl. ABR and QoE) in the media delivery chain as well as for (iv) end-to-end aspects, with a focus on, but not being limited to, HTTP Adaptive Streaming (HAS).

    The 138th MPEG meeting will be again an online meeting in July 2022. Click here for more information about MPEG meetings and their developments.