This blog post is also available at at bitmovin tech blog and SIGMM records.
The 112th MPEG meeting in Warsaw, Poland was a special meeting for me. It was my 50th MPEG meeting which roughly accumulates to one year of MPEG meetings (i.e., one year of my life I've spend in MPEG meetings incl. traveling - scary, isn't it? ... more on this in another blog post). But what happened at this 112th MPEG meeting (my 50th meeting)...
- Requirements: CDVA, Future of Video Coding Standardization (no acronym yet), Genome compression
- Systems: M2TS (ISO/IEC 13818-1:2015), DASH 3rd edition, Media Orchestration (no acronym yet), TRUFFLE
- Video/JCT-VC/JCT-3D: MPEG-4 AVC, Future Video Coding, HDR, SCC
- Audio: 3D audio
- 3DG: PCC, MIoT, Wearable
MPEG Friday Plenary. Photo (c) Christian Timmerer. |
As usual, the official press release and other publicly available documents can be found here. Let's dig into the different subgroups:
Requirements
In requirements experts were working on the Call for Proposals (CfP) for Compact Descriptors for Video Analysis (CDVA) including an evaluation framework. The evaluation framework includes 800-1000 objects (large objects like building facades, landmarks, etc.; small(er) objects like paintings, books, statues, etc.; scenes like interior scenes, natural scenes, multi-camera shots) and the evaluation of the responses should be conducted for the 114th meeting in San Diego.
The future of video coding standardization is currently happening in MPEG and shaping the way for the successor of of the HEVC standard. The current goal is providing (native) support for scalability (more than two spatial resolutions) and 30% compression gain for some applications (requiring a limited increase in decoder complexity) but actually preferred is 50% compression gain (at a significant increase of the encoder complexity). MPEG will hold a workshop at the next meeting in Geneva discussing specific compression techniques, objective (HDR) video quality metrics, and compression technologies for specific applications (e.g., multiple-stream representations, energy-saving encoders/decoders, games, drones). The current goal is having the International Standard for this new video coding standard around 2020.
MPEG has recently started a new project referred to as Genome Compression which is about of course about the compression of genome information. A big dataset has been collected and experts working on the Call for Evidence (CfE). The plan is holding a workshop at the next MPEG meeting in Geneva regarding prospect of Genome Compression and Storage Standardization targeting users, manufactures, service providers, technologists, etc.
Systems
Summer in Warsaw. Photo (c) Christian Timmerer. |
The 5th edition of the MPEG-2 Systems standard has been published as ISO/IEC 13818-1:2015 on the 1st of July 2015 and is a consolidation of the 4th edition + Amendments 1-5.
- SAND (Sever and Network Assisted DASH)
- FDH (Full Duplex DASH)
- SAP-Independent Segment Signaling (SISSI)
- URI Signing for DASH
- Content Aggregation and Playback COntrol (CAPCO)
In particular, the core experiment process is very open as most work is conducted during the Ad hoc Group (AhG) period which is discussed on the publicly available MPEG-DASH reflector.
MPEG systems recently started an activity that is related to media orchestration which applies to capture as well as consumption and concerns scenarios with multiple sensors as well as multiple rendering devices, including one-to-many and many-to-one scenarios resulting in a worthwhile, customized experience.
Video/JCT-VC/JCT-3D
The MPEG video subgroup is working towards a new amendment for the MPEG-4 AVC standard covering resolutions up to 8K and higher frame rates for lower resolution. Interestingly, although MPEG most of the time is ahead of industry, 8K and high frame rate is already supported in browser environments (e.g., using bitdash 8K, HFR) and modern encoding platforms like bitcodin. However, it's good that we finally have means for an interoperable signaling of this profile.
In terms of future video coding standardization, the video subgroup released a call for test material. Two sets of test sequences are already available and will be investigated regarding compression until next meeting.
After a successful call for evidence for High Dynamic Range (HDR), the technical work starts in the video subgroup with the goal to develop an architecture ("H2M") as well as three core experiments (optimization without HEVC specification change, alternative reconstruction approaches, objective metrics).
The main topic of the JCT-VC was screen content coding (SCC) which came up with new coding tools that are better compressing content that is (fully or partially) computer generated leading to a significant improvement of compression, approx. or larger than 50% rate reduction for specific screen content.
Audio
The audio subgroup is mainly concentrating on 3D audio where they identified the need for intermediate bitrates between 3D audio phase 1 and 2. Currently, phase 1 identified 256, 512, 1200 kb/s whereas phase 2 focuses on 128, 96, 64, 48 kb/s. The broadcasting industry needs intermediate bitrates and, thus, phase 2 is extended to bitrates between 128 and 256 kb/s.
3DG
MPEG 3DG is working on point cloud compression (PCC) for which open source software has been identified. Additionally, there're new activity in the area of Media Internet of Things (MIoT) and wearable computing (like glasses and watches) that could lead to new standards developed within MPEG. Therefore, stay tuned on these topics as they may shape your future.
The week after the MPEG meeting I met the MPEG convenor and the JPEG convenor again during ICME2015 in Torino but that's another story...
L. Chiariglione, H. Hellwagner, T. Ebrahimi, C. Timmerer (from left to right) during ICME2015. Photo (c) T. Ebrahimi. |
No comments:
Post a Comment