- Requirements: MPEG-AI strategy and white paper on MPEG technologies for metaverse
- JVET: Draft Joint Call for Evidence on video compression with capability beyond Versatile Video Coding (VVC)
- Video: Gaussian splat coding and video coding for machines
- Audio: Audio coding for machines
- 3DGH: 3D Gaussian splat coding
MPEG-AI Strategy
The MPEG-AI strategy envisions a future where AI and neural networks are deeply integrated into multimedia coding and processing, enabling transformative improvements in how digital content is created, compressed, analyzed, and delivered. By positioning AI at the core of multimedia systems, MPEG-AI seeks to enhance both content representation and intelligent analysis. This approach supports applications ranging from adaptive streaming and immersive media to machine-centric use cases like autonomous vehicles and smart cities. AI is employed to optimize coding efficiency, generate intelligent descriptors, and facilitate seamless interaction between content and AI systems. The strategy builds on foundational standards such as ISO/IEC 15938-13 (CDVS), 15938-15 (CDVA), and 15938-17 (Neural Network Coding), which collectively laid the groundwork for integrating AI into multimedia frameworks.Currently, MPEG is developing a family of standards under the ISO/IEC 23888 series that includes a vision document, machine-oriented video coding, and encoder optimization for AI analysis. Future work focuses on feature coding for machines and AI-based point cloud compression to support high-efficiency 3D and visual data handling. These efforts reflect a paradigm shift from human-centric media consumption to systems that also serve intelligent machine agents. MPEG-AI maintains compatibility with traditional media processing while enabling scalable, secure, and privacy-conscious AI deployments. Through this initiative, MPEG aims to define the future of multimedia as an intelligent, adaptable ecosystem capable of supporting complex, real-time, and immersive digital experiences.
MPEG White Paper on Metaverse Technologies
The MPEG white paper on metaverse technologies (cf. MPEG white papers) outlines the pivotal role of MPEG standards in enabling immersive, interoperable, and high-quality virtual experiences that define the emerging metaverse. It identifies core metaverse parameters – real-time operation, 3D experience, interactivity, persistence, and social engagement – and maps them to MPEG’s longstanding and evolving technical contributions. From early efforts like MPEG-4’s Binary Format for Scenes (BIFS) and Animation Framework eXtension (AFX) to MPEG-V’s sensory integration, and the advanced MPEG-I suite, these standards underpin critical features such as scene representation, dynamic 3D asset compression, immersive audio, avatar animation, and real-time streaming. Key technologies like point cloud compression (V-PCC, G-PCC), immersive video (MIV), and dynamic mesh coding (V-DMC) demonstrate MPEG’s capacity to support realistic, responsive, and adaptive virtual environments. Recent efforts include neural network compression for learned scene representations (e.g., NeRFs), haptic coding formats, and scene description enhancements, all geared toward richer user engagement and broader device interoperability.The document highlights five major metaverse use cases – virtual environments, immersive entertainment, virtual commerce, remote collaboration, and digital twins – all supported by MPEG innovations. It emphasizes the foundational role of MPEG-I standards (e.g., Parts 12, 14, 29, 39) for synchronizing immersive content, representing avatars, and orchestrating complex 3D scenes across platforms. Future challenges identified include ensuring interoperability across systems, advancing compression methods for AI-assisted scenarios, and embedding security and privacy protections. With decades of multimedia expertise and a future-focused standards roadmap, MPEG positions itself as a key enabler of the metaverse – ensuring that emerging virtual ecosystems are scalable, immersive, and universally accessible.
The MPEG white paper on metaverse technologies highlights several research opportunities, including efficient compression of dynamic 3D content (e.g., point clouds, meshes, neural representations), synchronization of immersive audio and haptics, real-time adaptive streaming, and scene orchestration. It also points to challenges in standardizing interoperable avatar formats, AI-enhanced media representation, and ensuring seamless user experiences across devices. Additional research directions include neural network compression, cross-platform media rendering, and developing perceptual metrics for immersive Quality of Experience (QoE).
Draft Joint Call for Evidence (CfE) on Video Compression beyond Versatile Video Coding (VVC)
The latest JVET AHG report on ECM software development (AHG6), documented as JVET-AL0006, shows promising results. Specifically, in the “Overall” row and “Y” column, there is a 27.06% improvement in coding efficiency compared to VVC, as shown in the figure below.
The visual testing will be carried out across seven categories, including various combinations of resolution, dynamic range, and use cases: SDR Random Access UHD/4K, SDR Random Access HD, SDR Low Bitrate HD, HDR Random Access 4K, HDR Random Access Cropped 8K, Gaming Low Bitrate HD, and UGC (User-Generated Content) Random Access HD. Sequences and rate points for testing have already been defined and agreed upon. For a fair comparison, rate-matched anchors using VTM (VVC Test Model) and ECM (Enhanced Compression Model) will be generated, with new configurations to enable reduced run-time evaluations. A dry-run of the visual tests is planned during the upcoming Daejeon meeting, with ECM and VTM as reference anchors, and the CfE welcomes additional submissions. Following this dry-run, the final Call for Evidence is expected to be issued in July, with responses due in October.
The Draft Joint Call for Evidence (CfE) on video compression beyond VVC invites research into next-generation video coding techniques that offer improved compression efficiency, reduced encoding complexity under runtime constraints, and enhanced functionalities such as scalability or perceptual quality. Key research aspects include optimizing the trade-off between bitrate and visual fidelity, developing fast encoding methods suitable for constrained devices, and advancing performance in emerging use cases like HDR, 8K, gaming, and user-generated content.
3D Gaussian Splat Coding
Gaussian splatting is a real-time radiance field rendering method that represents a scene using 3D Gaussians. Each Gaussian has parameters like position, scale, color, opacity, and orientation, and together they approximate how light interacts with surfaces in a scene. Instead of ray marching (as in NeRF), it renders images by splatting the Gaussians onto a 2D image plane and blending them using a rasterization pipeline, which is GPU-friendly and much faster. Developed by Kerbl et al. (2023) it is capable of real-time rendering (60+ fps) and outperforms previous NeRF-based methods in speed and visual quality. Gaussian splat coding refers to the compression and streaming of 3D Gaussian representations for efficient storage and transmission. It's an active research area and under standardization consideration in MPEG.MPEG technical requirements working group together with MPEG video working group started an exploration on Gaussian splat coding and the MPEG coding of 3D graphics and haptics (3DGH) working group addresses 3D Gaussian splat coding, respectively. Draft Gaussian splat coding use cases and requirements are available and various joint exploration experiments (JEEs) are conducted between meetings.
(3D) Gaussian splat coding is actively researched in academia, also in the context of streaming, e.g., like in “LapisGS: Layered Progressive 3D Gaussian Splatting for Adaptive Streaming” or “LTS: A DASH Streaming System for Dynamic Multi-Layer 3D Gaussian Splatting Scenes”. The research aspects of 3D Gaussian splat coding and streaming span a wide range of areas across computer graphics, compression, machine learning, and systems for real-time immersive media. In particular, on efficiently representing and transmitting Gaussian-based neural scene representations for real-time rendering. Key areas include compression of Gaussian parameters (position, scale, color, opacity), perceptual and geometry-aware optimizations, and neural compression techniques such as learned latent coding. Streaming challenges involve adaptive, view-dependent delivery, level-of-detail management, and low-latency rendering on edge or mobile devices. Additional research directions include standardizing file formats, integrating with scene graphs, and ensuring interoperability with existing 3D and immersive media frameworks.
MPEG Audio and Video Coding for Machines
The Call for Proposals on Audio Coding for Machines (ACoM), issued by the MPEG audio coding working group, aims to develop a standard for efficiently compressing audio, multi-dimensional signals (e.g., medical data), or extracted features for use in machine-driven applications. The standard targets use cases such as connected vehicles, audio surveillance, diagnostics, health monitoring, and smart cities, where vast data streams must be transmitted, stored, and processed with low latency and high fidelity. The ACoM system is designed in two phases: the first focusing on near-lossless compression of audio and metadata to facilitate training of machine learning models, and the second expanding to lossy compression of features optimized for specific applications. The goal is to support hybrid consumption – by machines and, where needed, humans – while ensuring interoperability, low delay, and efficient use of storage and bandwidth.The CfP outlines technical requirements, submission guidelines, and evaluation metrics. Participants must provide decoders compatible with Linux/x86 systems, demonstrate performance through objective metrics like compression ratio, encoder/decoder runtime, and memory usage, and undergo a mandatory cross-checking process. Selected proposals will contribute to a reference model and working draft of the standard. Proponents must register by August 1, 2025, with submissions due in September, and evaluation taking place in October. The selection process emphasizes lossless reproduction, metadata fidelity, and significant improvements over a baseline codec, with a path to merge top-performing technologies into a unified solution for standardization.
Research aspects of Audio Coding for Machines (ACoM) include developing efficient compression techniques for audio and multi-dimensional data that preserve key features for machine learning tasks, optimizing encoding for low-latency and resource-constrained environments, and designing hybrid formats suitable for both machine and human consumption. Additional research areas involve creating interoperable feature representations, enhancing metadata handling for context-aware processing, evaluating trade-offs between lossless and lossy compression, and integrating machine-optimized codecs into real-world applications like surveillance, diagnostics, and smart systems.
The MPEG video coding working group approved the committee draft (CD) for ISO/IEC 23888-2 video coding for machines (VCM). VCM aims to encode visual content in a way that maximizes machine task performance, such as computer vision, scene understanding, autonomous driving, smart surveillance, robotics and IoT. Instead of preserving photorealistic quality, VCM seeks to retain features and structures important for machines, possibly at much lower bitrates than traditional video codecs. The CD introduces several new tools and enhancements aimed at improving machine-centric video processing efficiency. These include updates to spatial resampling, such as the signaling of the inner decoded picture size to better support scalable inference. For temporal resampling, the CD enables adaptive resampling ratios and introduces pre- and post-filters within the temporal resampler to maintain task-relevant temporal features. In the filtering domain, it adopts bit depth truncation techniques – integrating bit depth shifting, luma enhancement, and chroma reconstruction – to optimize both signaling efficiency and cross-platform interoperability. Luma enhancement is further refined through an integer-based implementation for luma distribution parameters, while chroma reconstruction is stabilized across different hardware platforms. Additionally, the CD proposes removing the neural network-based in-loop filter (NNLF) to simplify the pipeline. Finally, in terms of bitstream structure, it adopts a flattened structure with new signaling methods to support efficient random access and better coordination with system layers, aligning with the low-latency, high-accuracy needs of machine-driven applications.
Research in VCM focuses on optimizing video representation for downstream machine tasks, exploring task-driven compression techniques that prioritize inference accuracy over perceptual quality. Key areas include joint video and feature coding, adaptive resampling methods tailored to machine perception, learning-based filter design, and bitstream structuring for efficient decoding and random access. Other important directions involve balancing bitrate and task accuracy, enhancing robustness across platforms, and integrating machine-in-the-loop optimization to co-design codecs with AI inference pipelines.
Concluding Remarks
The 150th MPEG meeting marks significant progress across AI-enhanced media, immersive technologies, and machine-oriented coding. With ongoing work on MPEG-AI, metaverse standards, next-gen video compression, Gaussian splat representation, and machine-friendly audio and video coding, MPEG continues to shape the future of interoperable, intelligent, and adaptive multimedia systems. The research opportunities and standardization efforts outlined in this meeting provide a strong foundation for innovations that support real-time, efficient, and cross-platform media experiences for both human and machine consumption.The 151st MPEG meeting will be held in Daejeon, Korea, from 30 June to 04 July 2025. Click here for more information about MPEG meetings and their developments.